Application Software Programming Standards Revision: Preliminary-C
January 1997

Space Transportation System
Command, Control and Monitor Application Software
Programming Standards

Contract NAS10-10900

Kennedy Space Center, Florida

Application Software Programming Standards Revision: Preliminary-C
January 1997

1. INTRODUCTION

Good coding style should encourage consistent program layout, improve maintainability and
portability and reduce errors. This standard provides rules and recommendations that will aid in
reaching this consistency across the software development organizations. Of necessity, these
standards cannot cover all situations. Experience and informed judgment count for as much as the
standards. Ultimately, the goal of these standards is to increase portability, reduce maintenance and
above all improve clarity.

1.1 PURPOSE

The purpose of this standard is to define one style of programming in C/C++. The standards and
recommendations presented here are not final, but should serve as a basis for continued software
development in these languages. This collection of standards should be viewed as a dynamic
document; suggestions for improvement are encouraged.

Programs that are developed according to these standards and recommendations should be correct
and easy to maintain. In order to attain these goals, the programs should:

a. Have a consistent style

b Be easy to read and understand

C. Be free of common types of errors

d. Be maintainable by different programmers

e Be portable to other architectures/platforms

1.2 SCOPE

This standard applies to all Application Software developed or maintained for use in the Space
Transportation System. The standard covers programming style including naming conventions,
program layout, syntax style and class (C++) design considerations. Questions of program design or
architecture are beyond the scope of this document.

As a matter of convenience and efficiency, this document contains both rules and recommendations
on software programming practices. Sections which are designated as rules must be adhered to
without exception. Recommendations are provided as a guide for developing all software in as
common a style as possible without imposing unnecessary restrictions. As such, adherence to the
recommendations is suggested, but is not mandatory. However, deviation from the
recommendations should only be done with good justification.

1.3 AUTHORITY

This document is internally controlled by the CLCS Project Manager or the appointed representative
associated with the implementing department. All modifications to the document require this level of
approval.

Application Software Programming Standards Revision: Preliminary-C
January 1997

1.3.1 Applicability

This standard applies to all Command, Control and Monitor Application Software developed for the
CLCS.

1.3.2 Standard Modification

A form for requesting new rules or changes to the rules of this standard has been included as an
appendix to this document. All requests must be submitted to the standard responsible
organizational representative (ROR) for evaluation.

1.4 REFERENCE RESOURCES
The following references were used in compiling the rules and recommendations of this standard:

Software and Automation Systems Branch C++ Programming Style, Version 1.0
Automation Systems Branch (Code 522), Goddard Space Flight Center,
July 1992.

Programming in C++, Rules and Recommendations
Ellemtel Telecommunication Systems Laboratories, Alvsjo, Sweden, 1992.

Recommended C Style and Coding Standards
Bell Labs, Zoology Computer Systems, University of Toronto,
CS University of Washington, 1989.

Writing Solid Code
Steve Maguire, Microsoft Press, Redomond, Washington, 1993.

C++ Programming Style
Tony Cargill, Addison-Wesley Publishing, Reading, Massachusetts, 1992.

Application Software Programming Standards Revision: Preliminary-C
January 1997

2. EXECUTABLE PROGRAM NAMING CONVENTIONS

This section of the CLCS CCM Application Software Standard defines the system to be used for
alphanumerically identifying all CCM application software used to monitor and control the STS Space
Shuttle and related Ground Support Equipment (GSE) from the CLCS.

2.1 NAME CONTROL

The KSC NASA and contractor organizations responsible for the development of CCM application
software shall also be responsible for the tracking of all program names. A register of all assigned
names shall be maintained and no program name shall be reused once it has been issued. The
mechanism for assigning program names shall be at the discretion of the responsible Engineering
groups.

2.2 NAMING CONVENTION

RULE: All CCM Application Software program names shall be limited to a maximum of 32 characters
in length. Two separate fields shall be used to define the owner and purpose of the program as
defined in the following sections. The program name shall be formatted as follows:

SYS.[Alpha/Numeric Identifier]

2.2.1 Responsible System Field

RULE: The first three characters of the name field shall identify the system associated with the
program as defined by each responsible engineering group followed by a period delimiter.

APU Auxiliary Power Unit LH2 Liquid Hydrogen System
BHY SRB Hydraulics (HPU/HYD) LO2 Liquid Oxygen System

CIN CCS Integration MEQ Mechanisms

CMS CCS Master MPS Main Propulsion System
COM Communications MST Master

DPM DPSME NAV Navigation

DPS Data Processing System OAA Orbiter Access Arm

ECL ECLSS OMS Orbiter Maneuvering System
ECS Environmental Control System PNU CCS Pneumatics System
EPD Electrical Power Distribution PRS Power Reactant Storage & Distribution System
FSW Flight Software PLD Payload

GLS Ground Launch Sequencer PVD Purge, Vent & Drain

GNC Guidance, Navigation & Control PWR CCS 60Hz Power

HVC CCS Heating, Ventilation & Air Conditioning RCS Reactive Control System
HWS Hazardous Warning System RSS Range Safety System

HYD Orbiter Hydraulics SSM Space Shuttle Main Engine
INS Instrumentation WTR CCS Water System

INT Integration
LAC Launch Accessories

Application Software Programming Standards Revision: Preliminary-C
January 1997

2.2.2 Alpha/Numeric Identifier Field

RULE: The remaining field provides a 28 character alpha/numeric field for unique identification of
the program. This field may include but is not limited to a method for identifying different subsystems
within a system and a functional description of the program. Valid characters for this field shall
include the upper and lowercase alpha characters, numerals O through 9, dash, underscore,
ampersand, and period.

Application Software Programming Standards Revision: Preliminary-C
January 1997

3. PROGRAMMING RULES AND RECOMMENDATIONS
3.1 FILE ORGANIZATION

3.1.1 Source Code Contents

RULES: All source code files shall have the following sections in the order specified. If a section
does not apply, then it is not necessary to include it. Each applicable section shall be preceded by a
section title comment.

1. All program source code files shall include an introductory comment that provides a
description of the module and a revision history that includes the ending revision number,
WAD number(s) and description of the change(s), the name and organization of the
programmer making the change(s), and the date of the change(s). An example of the
required introductory comment is provided in Appendix A.

RECOMMENDATION: Introductory comments should include descriptions of any interprocess
communications techniques and their uses (e.g. shared memory, streams, etc.) as well as
anything unique about how the module is designed/coded.

RULE: All files shall include the following copyright statement in the introductory comment:

Copyright (year) National Aeronautics and Space Administration
All Rights Reserved

where year represents the year the program baseline revision was created.
2. System include files (e.g. <iostream.h>)
3. Application specific include files (e.g. “VBaseApplication.h”)
4. External functions
5. External variables
6. Constants
7. Macros
8. Class Declarations

9. Non-member functions

Application Software Programming Standards Revision: Preliminary-C
January 1997

3.1.2 File Size

RECOMMENDATION: File size should be limited to approximately 1000 lines of source code.
Although there is no real maximum length for source files, those with more than 1000 lines are
cumbersome to deal with. Editors may not have enough temporary space to edit the file and
compilations will go slower.

3.1.3 Line Length

RECOMMENDATION: Line lengths should be limited to 79 characters. Lines longer than 79
characters are not handled well by all terminals and should be avoided if possible. Excessively long
lines which result from deep indentation are often a symptom of poorly organized code.

Source code lines should not wrap unless absolutely necessary, as in the definition of a long literal.
This can lead to confusion about program structure.

3.1.4 Include File Contents

RULE: An application include file shall contain all other necessary include files to support the classed
referenced in the file. It is more maintainable to have all supporting files automatically included when
a class include file is used than requiring the user to remember to include those support files.

3.1.5 Multiple Inclusion Prevention

RULE: Every include file shall contain a mechanism that prevents multiple inclusions of the file. The
easiest way to avoid multiple includes of a file is by using the #ifndef/#define block at the beginning
of the file and #endif at the end of the file.

3.2 APPLICATION FILE NAMING CONVENTIONS

The purpose of these conventions is to provide a uniform interpretation of fle names. One reason
for this is that it is easier to develop and/or use tools which base their behavior on file name
extensions.

3.2.1 Required Files

RULE: Each class shall be represented by two source code files: the interface definition (or header)
file and the implementation file.

Approved Exception: Two closely interrelated classes may be combined into a single pair of
header and implementation files.

Application Software Programming Standards Revision: Preliminary-C
January 1997

3.2.2 Application Filenames

RECOMMENDATION: Always give a file a name that is unique in as large a context as possible.
Since class names must generally be unique within a large context, it is appropriate to utilize this
characteristic when naming its implementation and header files. This convention makes it easy to
locate a class definition using a file-based tool.

RULE: A header file shall have the same name as its associated implementation file (e.g.
BaseClass.C and BaseClass.h)

RULE: Interface definition (header) files shall not have filenames that have a system complement
(e.g. “math.h” and <math.h>). The statement #include “math.h” will include the standard library math
include file if the intended one is not found in the current directory.

3.2.3 Application Source Code Filename Extensions
RULE: The extensions listed in the following table shall be used for all source code files.

Extension File Type
.C C++ implementation file
.C C implementation file
.h All application header files

3.3 LIBRARY FILE NAMING CONVENTIONS

3.3.1.1 Library Filenames

RECOMMENDATION: Library filenames should be unique in as large a context as possible. The
name should reflect the function of the library, as well as indicate that it is a library.

3.4 SOURCE CODE COMMENTS

RECOMMENDATIONS: It is essential to document source code to capture the thought processes
behind the software development. It may also be helpful to include a requirements tracking cross-
reference. This should be compact and easy to find. By properly choosing names for variables,
functions and classes and by properly structuring the code, there is less need for lengthy comments
within the code.

Note that comments in include files are meant for the users of classes, while comments in
implementation files are meant for those who maintain the code. A tactical comment describes what
a single line of code is intended to do and is placed, if possible, at the end of the line. Unfortunately,
too many tactical comments can render the code unreadable.

3.4.1 Comment Maintenance

RULE: Comments shall be maintained with the same attention as the associated code. Comments
that disagree with the code are of negative value. The importance of keeping the comments in
synchronization with the code cannot be over emphasized.

Application Software Programming Standards Revision: Preliminary-C
January 1997

3.4.2 Comment Syntax

RECOMMENDATION: Use the “//” syntax for all comments (C++ compilers only). If the characters “//”
are used consistently for writing comments, then the combination of “/* */” may be used to make
comments out of entire sections of code during development and debug phases.

3.4.3 Strategic Comments

A strategic comment describes what a function or section of code is intended to do and is normally
placed before the code.

RULE: All strategic comments shall appear before the section of code they document. Putting a
comment at the top of a 3 - 10 line section explaining the purpose of the code is often more useful
than a comment on each line describing the micrologic.

RULE: Every function shall contain a strategic comment before the function declaration explaining its
purpose and anything special about the function. It is also helpful to add a comment for the
parameter list which describes the purpose of each parameter.

3.5 FUNCTION/VARIABLE NAMING CONVENTIONS

RECOMMENDATION: When naming a class, function or variable, the names should be as clear as
possible. The goal should be to make the user’s interface conceptually transparent. The code will
be more understandable and readable when names are closely related with their associated
purpose.

3.5.1 Naming Conventions

RULES: The following conventions shall be followed for all class, function and variable names.
Underscores shall not be used in any user application name. All names shall be mixed case with the
initial letter of each word capitalized (e.g. BaseClass), with further distinction by Type as defined with
the exception of constants.

1. Virtual base classes shall begin with a capital vV’ with the first letter of each word capitalized
thereafter(e.g. VBaseClass).

2. Function names shall be mixed case with the initial letter of each word capitalized
(e.g. OpenValve).

3. Class member attributes shall begin with a lower-case ‘m’ with the first letter of each word
capitalized thereafter (e.g. mMemberObiject).

4. Global variables (which should be avoided if at all possible) shall begin with a lower-case ‘g’
with the first letter of each word capitalized thereafter (e.g. gGlobalVariable).

5. Local variables shall begin with the first word in lower-case with the first letter of each word
capitalized thereafter (e.g. internalVariable).

6. Constants (const and enum) and macros shall be named in all upper-case letters (e.g.
HILIM).

Application Software Programming Standards Revision: Preliminary-C
January 1997

3.5.2 Naming Recommendations

The following conventions should be followed when naming classes, functions and variables.
Adherence to these suggestions will greatly enhance the maintainability of the software.

1. RECOMMENDATION: Choose names that suggest the usage. One rule of thumb is that a
name which cannot be pronounced is a bad name. A long name is normally better than a
short, cryptic one, but the truncation problem must be taken into consideration.
Abbreviations can always be misunderstood. Global variables, functions and constants
should have long enough names to avoid name conflict, but not unreasonably long.

2. RULE: Names that differ only by the use of upper-case and lower-case letters shall not be
used.

3. RECOMMENDATION: Names should not include abbreviations that are not generally
accepted.

3.6 OPTIMIZATION

3.6.1 Condition Assertion

RECOMMENDATION: The assert macro (contained in <assert.h>) should be used whenever
possible to assist in the detection and isolation of errors. assert is a debug-only macro that aborts
execution if its argument is false. assert should not disturb memory or initialize data that would
otherwise be uninitialized or cause any other side effects.

3.6.2 Performance Enhancements

RECOMMENDATIONS: Optimize code only if it has a known performance problem. Various industry
tests have demonstrated that programmers generally spend a lot of time optimizing code that is
seldom or never executed. If a program’s performance is not acceptable, determine the exact nature
of the problem before starting optimization activities.

Performance measurement development tools (e.g. Pure Software, Quantify, CenterLine TestCenter)
should be used to provide performance measurements that can be used to improve performance and
isolate run-time errors.

3.7 PORTABILITY

C/C++ code is not inherently portable. Thought and effort are required to make it so. As a general
practice, all other things being equal, portable code is better than non-portable code. This section
provides the rules and recommendations for portability standardization.

3.7.1 Main Routine Form

RULE: The heading for main shall be defined as either:
int main (void)
int main (int argc, char *argv|])

These are the forms explicitly sanctioned by the ANSI-C standard. Other common forms, such as
void main (void) only work on some platforms.

10

Application Software Programming Standards Revision: Preliminary-C
January 1997

3.7.2 Program Exit Codes

RULE: The constants EXIT_SUCCESS and EXIT_FAILURE shall be used as program exit codes.
Calling exit(0) is portable, but exit(1) is not. A return statement in main effectively calls exit, so main
should normally return EXIT_SUCCESS. These constants are defined in <stdlib.h >.

3.7.3 Object Size Determination

RULE: The generic type size_t (defined in several standard headers) shall be used as the type of an
object that holds the size of another object. size t is always defined as an unsigned integer type,
which varies from platform to platform. wunsigned long int could be used in place of size t, but it
may be wasteful on some architectures. size t is always the right size (e.g. size_t strlen (const
char#)).

3.7.4 Pointer Difference Calculation

RULE: When the difference between two pointers is required, the value shall be stored in an object
of type ptrdiff t (defined in <stddef.h >). Each implementation defines ptrdiff t as a signed integer
type of the appropriate size for the target architecture.

3.7.5 User Unique Data

RECOMMENDATION: The generic types of void* and void(*)() should be used for user unique data
objects and functions. The void* type is guaranteed to have enough bits of precision to hold a
pointer to any data object. The void(*)() type is guaranteed to be able to hold a pointer to any
function. Be sure to cast pointers back to the correct type before using them.

3.7.6 Long Data Type

RECOMMENDATION: Be very careful defining data structures using the long data type. If a stream
moves data between platforms with different base register sizes (e.g. HP uses 32-bit, DEC Alpha
uses 64-bit), the effective size of the long will cause data structures to be misaligned.

3.7.7 System Calls
RULE: System calls shall not be used that are platform dependent.

3.7.8 External File References

RECOMMENDATION: When referencing external files and/or programs, specify the path using either
a configuration file or environment variable. Avoid hard-coded pathnames. The use of hard-coded
pathnames will cause the re-code of modules when the file structure changes. Also, do not assume
a user’'s PATH variable includes the directory for what should be a common file. Always specify the
full pathname for all files and/or programs used.

3.7.9 Temporary Files

RECOMMENDATIONS: When using temporary files, use the UNIX function tempnam to ensure
unique filenames.

Use a directory other than /tmp for temporary file storage. On some systems, the /tmp directory

usage is restricted by the System Administrator. Using this directory to store temporary files in this
circumstance will cause the read/write to fail.

11

Application Software Programming Standards Revision: Preliminary-C
January 1997

4. CODING STANDARDS
4.1 GENERAL CODING

4.1.1 Braces Placement

RULE: Braces “{ }” which enclose a block of code shall be placed in the same column on separate
lines directly before and after the block. The placement of braces seems to have been the subject of
the greatest debate concerning code appearance. For consistency across the project, this style shall
be used:

if (condition == TRUE)

{
fTrueFunctionl1(),
fTrueFunction2();
}
else
{
fFalseFunction1(),
fFalseFunction2(),
}

4.1.2 Operator Usage

RULE: Spaces around the “.” and “->* operators shall not be used. Code is more readable if spaces
are not used in these instances.

4.1.3 Flow Control Statements

4.1.3.1 RECOMMENDATION: The flow control statements while, for and do should be followed by a
block of code, even if it is empty. At times, everything that is to be done in a loop can easily be
written on one line in the loop statement. It may then be tempting to conclude the statement with a
semicolon at the end of the line. This may lead to misreading of the code since the semicolon may
be missed. It seems to be better to place an empty block of code after the statement to make it
completely clear what the code is doing.

4.1.3.2 RULE: No more than one statement shall be included per line of source code.

4.1.3.3 Error handling needs to be addressed here.

4.1.3.4 RULE: The code following a case label shall always be terminated by a break/return
statement. When several case labels are followed by the same block of code, only one break/return
statement is required. If the code which follows a case label is not terminated by a break/return , the

execution continues after the next case label. This means that poorly tested code can be erroneous
and still seem to work.

4.1.3.5 RULE: A switch statement shall always contain a default branch which handles unexpected
cases.

12

Application Software Programming Standards Revision: Preliminary-C
January 1997

4.1.3.6 RECOMMENDATION: Use the goto syntax with caution and deliberation. goto breaks the
control flow and can lead to code that is difficult to comprehend and maintain. For extremely time
critical applications, goto may be permitted. Every such usage must be carefully motivated, and
should be explained in a comment.

4.1.3.7 RECOMMENDATION: Use parenthesis to clarify the order of evaluation for operations in
expressions. If the operator precedence is not obvious or the expression is complicated or long, use
parenthesis to make it more readable. Even if the parenthesis are not technically required, make the
order of evaluation obvious.

4.1.3.8 RECOMMENDATION: Check the fault codes which may be received from library functions
even if the function seems foolproof. Two important characteristics of a robust system are that all
faults are reported and, if the fault is so serious that continued execution is not possible, the process
is terminated. In this way the propagation of faults through the system is avoided. In achieving this,
it is important to always test fault codes from library functions (e.g. opening/closing files, allocation of
memory for data). One test too many is better than one test too few. Application specific functions
should preferably not return fault codes but should instead take advantage of exception handling
features.

4.1.4 Memory Allocation

4.1.4.1 RULE: malloc, realloc or free shall not be used for memory allocation in C++ only. In C,
malloc, realloc and free are used to allocate memory dynamically on the heap. This may lead to
conflicts with the use of the new and delete operators in C++. It is dangerous to:

1. Invoke delete for a pointer obtained via malloc/realloc .
2. Invoke malloc/realloc for objects having constructors.
3. Invoke free for anything allocated using new.

4.1.4.2 RULE: Empty brackets “[]” shall always be provided for delete when deallocating arrays
(C++ only). If an array ‘p’ having a type ‘T’ is allocated, it is important to invoke delete in the correct
way:
1. (WRONG) delete p results in the destructor being invoked only for the first object of type T.
2. (WRONG) delete [m] p where ‘m’ is an integer which might be greater than the number of
objects allocated earlier, the destructor for ‘T’ will be invoked for memory that does not
represent objects of type T.
3. (CORRECT) delete [] p is the correct way since the destructor will then be invoked only for
those objects which were allocated earlier.

4.1.4.3 RULE: Memory that is allocated shall be deallocated when it is no longer needed. Do not
allocate memory and expect that someone else will deallocate it later. For instance, a function can
allocate memory for an object which is then returned to the user as the return value for the function.
There is no guarantee that the user will remember to deallocate the memory, and the interface with
the function then becomes considerably more complex.

13

Application Software Programming Standards Revision: Preliminary-C
January 1997

4.1.4.4 RULE: A pointer that points to deallocated memory shall always be assigned to a new value.
Pointers that point to deallocated memory should either be set to O or be given a new value to
prevent access to released memory. This can be a very difficult problem to solve when there are
several pointers which point to the same memory since C++ has no garbage collection.

4.1.4.5 RECOMMENDATION: Avoid frequently allocating and deallocating memory (C only) which
may cause memory fragmentation.

4.1.5 Standard Error Handling
Standard Error Handling needs to be addressed here.

4.2 CLASS CODING (C++ Only)
4.2.1 Class Definitions

4.2.1.1 RULE: The public, protected and private sections of a class definition shall be declared in
that order. Both member attributes and member functions shall be declared in the same appropriate
section. By placing the public section first, everything that is of interest to a user is gathered at the
beginning of the class definition. The protected section may be of interest to designers when
considering inheriting from the class. The private section contains details that should have the least
general interest.

4.2.1.2 RECOMMENDATION: Make classes as simple as possible. Give each class a clear
purpose. If classes grow too complicated, make more classes: break complex classes into simpler
ones.

4.2.1.3 RECOMMENDATION: Friends of a class should be used to provide additional functions that
are best kept outside of the class. A friend is a non-member of a class that has access to the non-
public members of the class. Friends offer an orderly way of getting around data encapsulation for a
class. Friends are good if used properly, but the use of many friends can indicate that the modularity
of the system is poor.

4.2.1.4 RULE: Multiple inheritance shall not be used. It is for getting out of bad situations, especially
repairing interfaces where control over the broken class belongs to someone else. The complexities
of multiple inheritance override its usefulness in most situations.

4.2.1.5 RECOMMENDATION: Polymorphism needs to be addressed here. No downcasting should
be used.

4.2.2 Required Class Functions

4.2.2.1 RULE: All class definitions shall have the constructor, destructor and assignment operator
(operator=) defined. Don't let the compiler create these functions. Class designers should always
say exactly what the class should do and keep the class entirely under their control. If a copy

14

Application Software Programming Standards Revision: Preliminary-C
January 1997

constructor or assignment operator is not desired, declare it private. Remember, if any constructor is
specified, it prevents the default constructor from being synthesized.

4.2.2.2 RULE: A class which uses new to allocate instances managed by the class or has pointers
shall define a copy constructor. A copy constructor is recommended to avoid surprises when an
object is initialized using an object of the same type. If an object manages the allocation and
deallocation of objects on the heap, only the value of the pointer will be copied. This can lead to two
invocations of the destructor for the same object, probably resulting in a run-time error.

4.2.2.3 RULE: All classes which are used as base classes and which have virtual functions shall
define a virtual destructor. If a class having virtual functions but without virtual destructors is used
as a base class, there may be a surprise if pointers to the class are used. If such a pointer is
assigned to an instance of a derived class and if delete is then used on the pointer, only the base
class’ destructor will be invoked. If the program depends on the derived class’ destructor being
invoked, it will fail.

4.2.2.4 RULE: If a public base class does not have a virtual destructor, no derived class nor
members of a derived class should have a destructor. If a derived class or member of a derived
class defines a destructor and the base class destructor remains non-virtual, memory leaks or other
abnormalities can occur.

4.2.3 Member Function Rules and Recommendations

4.2.3.1 RULE: Member functions shall only be prototyped within a class definition. A member
function that is defined within a class definition automatically becomes an in-line function. Class
definitions are less compact and more difficult to read when they include definitions of member
functions. It is easier for an in-line member function to become an ordinary member function if its
definition is placed outside of the class definition.

4.2.3.2 RULE: A member function that does not affect the state of an object shall be declared
const. Member functions declared as const may not modify member data and are the only
functions which may be invoked on a const object. A const declaration is excellent insurance that
objects will not be modified when they should not be. const member functions may never be
invoked as an “lvalue” (a location value where a value may be stored).

4.2.3.3 RULE: A public member function shall never return a non-const reference or pointer to
member data. By allowing a user direct access to the private member data of an object, this data
may be changed in ways not intended by the class designer.

4.2.3.4 RULE: Do only what is minimally necessary in constructors. Not only does this produce a
lower overhead for constructor calls, but the constructors are also less likely to throw exceptions or
cause problems. Use initialization routines if necessary to initialize class attributes.

4.2.3.5 RULE: All functions shall have a prototype definition. This practice helps eliminate function
calling errors that might otherwise have been avoidable. This purpose can be strengthened by

15

Application Software Programming Standards Revision: Preliminary-C
January 1997

making the argument types more accurate (e.g. unsigned ch instead of int). The drawback to this
is that it may be necessary to cast arguments to silence noncritical type mismatch warnings.

4.2.3.6 RULE: The names of formal arguments to functions shall be specified and are to be the
same in both the function declaration and in the function definition. The names of formal arguments
may be specified in both the function declaration and definition in C++, even if these are ignored by
the compiler in the declaration. Providing for function arguments is part of the function
documentation. The name of the arguments may clarify how they are used, reducing the need to
include comments for documenting that purpose.

4.2.3.7 RULE: The return type of a function shall always be provided explicitly. If no return type is
explicitly provided, it is, by default, an int. To improve the readability and clarity of the code, function
return types must be specified.

4.2.3.8 RULE: A public function shall never return a reference or pointer to a local variable. If a
function returns a reference or pointer to a local variable, the memory to which it refers will already
have been deallocated when the reference or pointer is used. The compiler may or may not give a
warning of this.

4.2.3.9 RULE: When two operators are opposite (such as “==" and “!="), both shall be defined even
if only one is necessary.

4.2.3.10 RECOMMENDATION: When declaring functions, the leading parenthesis and the first
argument (if any) should be written on the same line as the function name. If space permits, other
arguments and the closing parenthesis may also be on the same line. Otherwise, each additional
argument should be written on a separate line (with the closing parenthesis directly after the last
argument).

4.2.3.11 RECOMMENDATION: Avoid functions with many arguments. Functions having long lists of
arguments look complicated, are difficult to read, and can indicate poor design. In addition, they are
difficult to read and to maintain.

4.2.3.12 RECOMMENDATION: Pass arguments by const reference as the first choice. As long as
the object being passed in does not need to be modified, this practice is best because it has the
simplicity of pass-by-value syntax but does not require expensive constructions and destructions to
create a local object.

4.2.3.13 ??? RECOMMENDATION: If a function stores a pointer to an object which is accessed via
an argument, the argument should have the type pointer. Use reference arguments in other cases.
By using references instead of pointers as function arguments, code can be made more readable,
especially within the function. A disadvantage is that it is not easy to see which functions change the
values of their arguments.

16

Application Software Programming Standards Revision: Preliminary-C
January 1997

4.2.3.14 RECOMMENDATION: Watch for overloading. A function should not conditionally execute
code based on the value of an argument (default or not). In this case, two or more overloaded
functions should be created.

4.2.3.15 RECOMMENDATION: Use overloaded function names instead of different function names to
distinguish between functions that perform the same operations on different data types. Remember,
C++ does not permit overloading on the basis of the return type.

4.2.3.16 RECOMMENDATION: Consider default arguments as an alternative to function overloading.
In general, replacing function overloading by a default argument makes a program easier to maintain
because there is only one copy of the function body (e.g. function A (int a, char b, x=1)).

4.2.3.17 RECOMMENDATION: When overloading functions, all variations should be used for the
same purpose. Overloading of functions can be a powerful tool for creating a family of related
functions that only differ as to the type of data provided as arguments. If not used properly (such as
using functions with the same name for a different purpose), they can, however, cause considerable
confusion.

4.2.3.18 RECOMMENDATION: Avoid long and complex functions. If a function is too long it can be
difficult to comprehend. Generally, it can be said that a function should be no longer than two pages
since that is about how much that can be comprehended at one time.

If an error situation is discovered at the end of an extremely long function, it may be difficult for the
function to clean-up after itself and to “undo” as much as possible before reporting the error to the
calling function. By using short functions, such an error can be more exactly localized.

Complex functions are also much more difficult to test.

4.2.4 In-Line Member Function Rules and Recommendations

4.2.4.1 RULE: In-line functions shall not be defined in the interface definition (header) file for the
class.

4.2.4.2 RECOMMENDATION: Access and forwarding functions should be in-line member functions.
This will improve the performance of the class.

4.2.4.3 RULE: Constructors and destructors shall not be defined as in-line functions. A constructor
always invokes the constructors of its base classes and member data before executing its own code.
This cascading of in-line constructors may be too complex for some compilers to handle efficiently.

4.2.4.4 RULE: In-line functions and parameterized types shall be used instead of preprocessor
macros. This allows more parameter checking to be performed at compilation.

17

Application Software Programming Standards Revision: Preliminary-C
January 1997

4.2.45 RECOMMENDATION: Use of in-line functions in small programs can help performance.
Extensive use of in-line functions in large projects can actually hurt performance by enlarging code,
causing paging problems and forcing many recompilations.

4.2.5 Member Attribute, Variables and Constants

4.2.5.1 RULE: In variable declarations, the pointer qualifier (*) shall be with the variable name rather
than with the type. Declare variables as char *s, *, *u; rather than char* s, t, u; In the latter
instance, only s is declared as a character pointer.

4.2.5.2 RULE: Public and protected member data shall not be specified in a class definition. A
public variable represents a violation of one of the basic principles of object oriented programming,
namely, data encapsulation. Access functions should be used to return values of private member
data. This avoids the possibility of an arbitrary function changing the public data value which may
lead to errors that are difficult to locate.

4.2.5.3 RULE: Symbolic values shall be defined instead of numeric values in code. Numerical
values in code can be the cause of difficult problems if and when it becomes necessary to change a
value. A large amount of code can be dependent on such a value never changing and the value can
be used at a number of places in the code, leading to difficulty in locating all instances of them.

4.2.5.4 RULE: Constants shall be defined using const or enum instead of #define. The
preprocessor performs a textual substitution for macros in the source code which is then compiled.
This can lead to a number of negative consequences. Names declared with #define are untyped
and unrestricted in scope. IN contrast, names declared with const are typed and follow C++ scope
rules.

4.2.5.5 RECOMMENDATION: Variables should be declared with the smallest possible scope. A
variable ought to be declared with the smallest scope possible to improve the readability of the code
and so variables are not unnecessarily allocated.

4.2.5.6 RULE: Every variable that is declared shall be given a value before it is used. A variable
must be initialized before it is used. Normally the compiler gives a warning if a variable is undefined.
Instances of a class are usually initialized even if no arguments are provided in the declaration (the
empty constructor is invoked). By initializing all variables before they are used, the code is made
more efficient since no temporary objects are created for the initialization. For objects having large
amounts of data, this can result in significantly faster code. To declare a variable that has been
initialized in another file, the keyword extern is always used.

4.2.5.7 RULE: Pointers shall not be assigned a value of NULL and shall not be compared to NULL.
A value of O (zero) shall be used instead. According to the ANSI-C standard (and the pending ANSI-
C++ standard), NULL is defined as (void *)O or as 0. This may lead to errors unless an explicit type
conversion is supplied.

18

Application Software Programming Standards Revision: Preliminary-C
January 1997

4.2.5.8 RECOMMENDATION: Use unsigned for variables which cannot reasonably have negative
values.

4.3 AUTO GENERATED CODE
Code generated by commercial tools needs to be addressed here.

19

Application Software Programming Standards Revision: Preliminary-C
January 1997

5. MAKEFILES

The following methods include support for using appropriate compiler flags which ensure portability.
It is strongly recommended that the application software standard Makefile template is used.

5.1 TARGETS

5.1.1 Clean Target

RULE: All Makefiles shall include a clean target. The clean target restores the directory to the state
it would be in if the source had just been checked-out from the source code library. The Makefile
invokes the clean target for Makefiles in directories below it.

5.1.2 All Target

RULE: All Makefiles shall include an all target. The all target makes everything in that directory.
The Makefile invokes the all target for Makefiles in directories below it.

5.1.2.1 Default Target

RULE: All Makefiles shall include a default target. The default target must be the uppermost target
in the Makefile. Its sole function is to remind the user to invoke the Makefile through one of the
appropriate targets.

5.1.2.2 Makedepend Target

RECOMMENDATION: All Makefiles should include a makedepend target to assist in the setting of
dependencies. @ The makedepend target invokes the makedepend utility. The Makefile
dependencies are then automatically generated and added to the Makefile.

5.2 TAGS

RECOMMENDATION: Tags should be included in the Makefile when using the EMACS editor. The
Tags function results in EMACS setting flags to identify function names, variable names, etc. When
you want to locate the definition of the function or variable, you simply click on the name and EMACS
searches for and displays the location of the definition.

5.3 MACROS
RULE: The following macros shall be defined in all Makefiles:

5.3.1 The CC Macro

RULE: The CC Macro is set to the requested compiler (cc, acc or gcc) along with a switch indicating
the optimize or debug level for the compiler. A switch for ANSI-C and C++ is also available.

5.3.2 The LLIBS Macro

RULE: The LLIBS Macro gives the link library for C Code. All libraries required for proper linking
shall be included in this macro definition.

20

Application Software Programming Standards Revision: Preliminary-C
January 1997

6. USER INTERFACE STANDARDS

This section defines the programming standards that are applicable to the user display monitor
interfaces and control interfaces.

6.1 INTERFACE ATTRIBUTES

6.1.1 Title

RULE: Each display monitor shall have a title that identifies the system/subsystem being monitored
and the function of the monitor. The display program name shall be displayed as the display window
frame title.

6.1.2 Program Activity Indicator

RULE: Each display monitor shall have a location in the upper right corner of the skeleton that shall
be used to indicate activity of the associated software. This activity indication shall toggle between
two distinct symbols and shall be periodically updated by the driving software (either on a cyclic or
timed callback event basis).

6.1.3 Popup Windows/Menus

RULE: Popup Menus associated with cursor control targets shall have the target identifier as the
menu title, shall not be moveable, and shall contain separator bars between external control menu
items. Popup window displays shall follow the standards for displays.

6.1.4 Data Validity

Validity status of all data sources is provided through a system software user interface window (e.g.
FEP, HIM, OI/GPC format).

6.1.5 Window Attributes

RULE: Display size and resizing options shall be defined by the responsible systems and specified in
the display requirements. Message windows shall be scrollable when the data size exceeds the
display window size.

6.2 COLOR USAGE

RULE: The colors identified in this section are reserved for the data types they represent. Use of
these colors for display shall adhere to the following rules. Use of all other colors is at the discretion
of the Responsible Engineering Groups. The usage shall be documented in the system display
requirements and shall be consistent throughout the system’s application software set.

6.2.1 Normal Text Data

RULE: Normal text data is defined as data that is valid and is within nominal limits. Textual data that
is normal shall be displayed in GREEN.

6.2.2 Invalid Text Data

RULE: Invalid text data is defined as data that is either no longer being updated by CLCS, or is not
supported by the current OI/GPC format. Textual data that is invalid shall be displayed in WHITE.

21

Application Software Programming Standards Revision: Preliminary-C
January 1997

6.2.3 Discrepant/Cautionary Text Data

RULE: Discrepant or cautionary text data is defined as data that is valid but is outside of the normally
accepted value or limits. Textual data that is discrepant or cautionary shall be displayed in YELLOW.

6.2.4 Error/Urgent Text Data

RULE: Error or urgent text data is defined as data that is valid but is outside of the normally accepted
value or limits and represents an error or urgent condition that requires immediate resolution.
Textual data that is in error or urgent shall be displayed in RED.

6.2.5 Background Color

RULE: All displays shall be built using one of the following colors designated as background colors:
TBD. (Note: the display team is investigating the colors to designate as background colors based on
the reserved color list. This item will be completed after the study is complete.)

6.3 SYMBOLS

RULE: All displays shall be built from the standard set of display object symbols located in the
symbol library. Each symbol shall be reserved to represent a specific object or type of objects (e.g.
one symbol may represent a ball valve, clay valve and globe valve) and shall only be used for that
purpose. All new symbols must be included in the symbol library prior to their use on a display.

6.3.1 Symbol Library

RULE: The symbol library shall contain all approved display object symbols used on application
software displays.

6.3.2 Animation

RULE: Use of animation shall be defined by the system in the display requirements.
(Note: performance issues of animation are being examined by the display team and needs to be
addressed further in this document as more is learned.)

6.4 CONTROL INTERFACES
This section describes the standards that are applicable to all control interfaces.

6.4.1 Cursor Control Points

RULE: Specific locations on a display are identified as targets for issuing commands to both internal
and external receptors. When the cursor passes over a control point, the cursor symbol shall change
to indicate that it is over an active target, and return to the normal symbol when it leaves the control
point. The cursor entering an active control point shall not automatically cause any other action to
occur.

6.4.1.1 Display Control Point Identification

RULE: All cursor control points or targets used to issue external stimuli shall have a text descriptor
adjacent to the target symbol identifying the target’s function. Each descriptor on a given display
shall be unique.

22

Application Software Programming Standards Revision: Preliminary-C
January 1997

6.4.1.2 Emergency/Safing Control

RECOMMENDATION: Emergency and safing control may be performed through a single step action
which is uniquely identified on the display. These actions shall be defined by the systems in the
display requirements.

6.4.1.3 Normal Control

RULE: All normal cursor control points shall have a popup menu as the interface associated when
the target is armed. The popup menu shall have the target identifier as the menu title, shall not be
moveable, and shall contain separator bars between externally controlled item selections. All control
shall be initiated through this menu interface.

6.4.1.4 Alternate Control

RULE: If the primary mechanism for issuing commands and functions is via the mouse, a secondary
keyboard method shall also be provided.

6.4.2 Mouse Control
The basic definitions for each mouse key are as follows:

6.4.2.1 Mouse Key 1

RULE: All mouse initiated cursor control points shall be initiated by the operator using mouse key 1.
The keyboard equivalent of this is the Enter key.

6.4.2.2 Other Mouse Keys
RECOMMENDATION: Other mouse keys may be used for all other purposes except as stated above.

6.4.3 Programmable Function Key Interfaces

RULE: Programmable Function Keys shall be defined by the systems and usage shall be
documented in the system design documents. These keys shall be consistent throughout the
system’s application software set.

6.4.4 Programmable Function Panel Interfaces

RULE: Programmable Function Panel Keys shall be defined by the systems and usage shall be
documented in the system design documents. These keys shall be consistent throughout the
system’s application software set.

6.5 MESSAGE NOTIFICATION

RULE: All application software messages shall be identified with a date/time tag to milliseconds, and
shall include the functional program source of the message. Messages written to the application
software message window shall also be displayed in color as defined below.

6.5.1 Informational Messages

RULE: Informational messages shall be displayed in a color defined by the system and shall be
defined in the display requirements. This color shall be consistent throughout the system’s
application software set.

23

Application Software Programming Standards Revision: Preliminary-C
January 1997

6.5.2 Caution Messages

RULE: Caution messages shall follow the standard defined for cautionary text data and be displayed
in YELLOW. All caution messages shall also be recorded for archival (SPA equivalent).

6.5.3 Error Messages

RULE: Error messages shall follow the standard defined for error text data and be displayed in RED.
All error messages shall also be recorded for archival (SPA equivalent).

6.5.4 Prompts

RULE: All prompts shall be displayed to a prompt message window and be obvious that a user
response is required. The prompt interface shall be defined in the application software architecture
document as a user response window.

24

Application Software Programming Standards Revision: Preliminary-C
January 1997

APPENDIX A COMMENT FORMATS

6.6 INTRODUCTOR COMMENTS
RULE: The following format shall be used for all source code introductory comments.

//***

/** Name: Source file name o
//** *%*
/[** Description: A brief description of the file’s contents **
/ *k *%*
/[** Notes: Brief programming notes describing any peculiar aspects of the code **
[** contained in the file. Any detailed descriptions will appear in each *x
[** individual function’s comment header. o
/ *k *%*
[** Warnings/Limitations: *
[** Brief description of any shortcomings of the code in this file. Any **
[** detailed description will appear in each individual function’s comment **
1[** header. o
/ *k *%
/[** Revision History: **
/ KK e e e **
/** Ending Rev No WAD number and description of change driver and of change = **
I[** implemented o
I[** Programmer and Organization o
1[** Date o
//** *%*
/[** Copyright (base rev year) National Aeronautics and Space Administration *x
I[** All rights reserved. **

//**

25

Application Software Programming Standards Revision: Preliminary-C
January 1997

6.7 FUNCTION COMMENT HEADER

RULE: Each function within a source file shall have an associated comment header that provides the
following information:

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkkk

/** Name: Function name **
/ *k *%*
/[** Description: A brief description of the function’s purpose *
//** *%*
/** Arguments: argl - description of argl *x
I[** arg2 - description of arg2 *
/ *k *%*
[[** Returns: Description of the value that is returned. **
//** *%*
/[** Notes: Detailed programming notes describing the function’s design, the i
1[** decision processes associated with the development. These notes *x
[** should not make an attempt to describe the functionality of the code. **
1[** Functionality issues should be described with block comments or *x
I[** inferred from the code. o

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkhkkx

6.8 SECTION COMMENT HEADER

RULE: Each section of code shall have an associated comment header that provides the title of the
section as follows:

/ kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkk

1* *x
1* SECTION TITLE **
1* *x

/ kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkk

26

Application Software Programming Standards Revision: Preliminary-C
January 1997

APPENDIX B MAKEFILE TEMPLATES

6.9 SOURCE CODE MAKEFILE TEMPLATE
RECOMMENDATION: The following example is the template for the Makefile for source code:

TBD

6.10 SL-GMS DISPLAY MAKEFILE TEMPLATE

RECOMMENDATION: The following example is the template for the Makefile for SL-GMS generated
displays:

TBD

27

